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This study explores the recovery of alumina from sodium aluminate, sodium carbonate, and
sodium hydroxide solutions resulting from the leaching of calcium aluminate slags generated
from pyrometallurgical reduction of various ores/by-products for metallic iron, silicon, and
manganese extraction within several EU-funded projects. Such calcium aluminate slags are
leached with sodium carbonate, generating a pregnant leaching solution. The entire process is
evaluated starting from the carbonation of the pregnant leaching solution, where alumina hydrates
(aluminium hydroxides) are precipitated by purging carbon dioxide gas into the solution. The
alumina hydrates are calcined to produce alumina (aluminium oxide), which is used for its
dissolution in cryolite.

The research aims to highlight the key characteristics of this process and the challenges involved
in producing smelter-grade alumina. In addition, critical aspects of the process, such as the
removal of sodium ions from the hydrated precipitate, are assessed. These are instrumental
in attaining the purity and quality of the alumina hydrate. The findings demonstrate the
viability of processing industrial by-products into useful products with reduced environmental
impact. This study provides information on the efficiency of carbonation and facilitates the
development of more sustainable alumina production from alternative raw materials.

Keywords: Alumina hydrates, Alumina, Carbonation precipitation, Calcination, Cryolite
dissolution.

1. Introduction

Aluminothermic processes are emerging as promising alternatives to traditional carbothermic
reduction methods [1]. Unlike carbothermic reduction, which relies on carbon-based reductants
and results in significant CO, emissions, aluminothermic reduction employs aluminium,
preferably sourced from scrap or dross, as a reductant. This approach can substantially lower the
greenhouse gas emissions, particularly if the aluminium used can be recovered downstream.

Depending on the process, calcium aluminate (CA) slags are a by-product of aluminothermic
reduction processes. They are generated when aluminium reacts with oxides like dicalcium
silicate slag, iron oxide, or other metal oxides in the presence of a calcium source. CA slags can
also be produced from bauxite residue smelting for iron recovery. The composition and structure
of CA slags can vary, but they typically contain significant quantities of aluminium oxide and
depending on their phase composition and cooling conditions, can serve as secondary alumina
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sources. Efficient utilization of CA slags is crucial to maximizing resource recovery, minimizing
waste, and promoting a circular economy [2].

CA slags can be leached with a sodium carbonate (Na,COs) solution to produce a pregnant
leaching solution (PLS), rich in sodium aluminate and a solid residue predominantly composed
of calcium carbonate. Although this solution is often supersaturated, its alumina concentration
(15-70 g/L. AL,O5) is lower than that typically found in Bayer liquors (85-165 g/L. Al,O3) [3]. In
the Bayer process, only a relatively small portion of alumina is recovered via cooling
crystallization; the rest remains in the recycled liquor. In contrast, carbonation, through pH-driven
precipitation, can achieve high alumina recoveries, enhancing process productivity. Furthermore,
CO; addition regenerates the Na,COs solution, allowing it to be reused for fresh slag leaching.
Leaching CA slags with Na,COs yields a complex alkaline PLS, primarily composed of sodium
aluminate (NaAl(OH)4), sodium carbonate, and sodium hydroxide. The simplified leaching
reaction — similar to the liquor causticization — done in the Bayer process is shown in Equation 1,
though it varies with the specific CA phases:

CaO - Al203(s) + Na2C03(aq) + HZO(I) d ZNQOH(aq) + NaAlOz(aq) + CClC03 l (1)

When the resulting PLS is carbonated, alumina hydrates precipitate according to Equations 2-5.
These reactions highlight the dynamic interplay between dissolved carbon dioxide, hydroxide
ions, and aluminate species, ultimately leading to the formation of solid alumina hydrates.

C02(g) = COzag) (2)

COz(aq) + OH(aq) = HCO3(aq) 3)
HCO3(4g) + OH(agy = CO3gy + H200 (4)
AL(OH)3(aq) = AlOH;(5) L +0H,, (5)

While carbonation offers a promising method for alumina hydrate recovery, several challenges
must be addressed. High Na,COs concentrations in the solution, arising from incomplete leaching,
excessive reagent use, or excessive CO, addition, can lead to the formation of dawsonite
(NaAICO;3(OH),), a sodium aluminate carbonate hydroxide. Dawsonite co-precipitates with
alumina hydrates when Na,COs exceeds a critical concentration, reducing the purity of the final
product and causing significant sodium losses [4]. Another concern is silicon co-precipitation.
Silicate ions in the leach solution can lead to the incorporation of silicon into the precipitated
product. Additionally, sodium ions may adsorb onto the surface of alumina hydrates, especially
when sodium concentrations are high, further complicating downstream purification.

This study investigates the recovery of alumina from CA slags, a by-product of pyrometallurgical
processes, via a carbonation-based route. The goal is to produce smelter-grade alumina (SGA)
with a reduced environmental footprint. Key aspects examined include CO, consumption based
on flow rate, the impact of seeding on particle size enhancement, the removal of residual soda
and the calcination behavior of the alumina hydrates from alternative resources, contributing to a
more sustainable and circular economy. Finally, the dissolution of the calcined alumina in cryolite
is evaluated to assess its suitability for use in aluminium production.

2. Materials and Methods

2.1 Calcium Aluminate Slags
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The results of the dissolution test are presented in Figure 7. Calcined aluminas from different raw
materials are presented. The tested samples showed lower reactivities compared to the SGA
sample, however, this is still within acceptable limits. Concerning the alumina sample originating
from calcium silicate slag, the initial probe response was a sharp rise and fall before steadily
increasing. This initial response does not correspond to the amount of dissolved alumina,
indicating that the probe was disturbed by the alumina addition.

4. Conclusions

This study highlights key process insights for alumina recovery from calcium aluminate slags via
sodium carbonate leaching and carbonation. CO, consumption experiments showed that higher
gas flowrate accelerates precipitation but reduces gas utilization efficiency, as unreacted CO, exits
the system more rapidly. Seeding with gibbsite promoted both primary nucleation and secondary
crystal growth. Prominently, seeding also directed the precipitating phase toward gibbsite,
matching the seed material and enhancing phase selectivity.

Although the precipitated hydrates exhibited high Al,O; content, their Na;O levels exceeded SGA
limits. Water washing effectively reduced Na,O content to near industrial tolerance (0.6%),
though not fully within standard SGA specifications. Calcination revealed typical phase
transitions toward a-alumina at 1200 °C, with slower kinetics attributed to residual sodium
impurities. Despite this, the final products demonstrated good dissolution behaviour in molten
cryolite, comparable to standard SGA, confirming its potential as a viable alumina source pending
further impurity control.

To sum up, if desilication is applied prior to carbonation and sodium removal becomes more
effective, reducing the need for extensive water washing, there is a clear potential for scalable and
sustainable alumina production from calcium aluminate slags, with promising applicability in the
aluminium industry. The remaining consideration is whether differences in precipitate
morphology could pose operational challenges, which warrants further investigation.
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