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Abstract 

This study explores the recovery of alumina from sodium aluminate, sodium carbonate, and 

sodium hydroxide solutions resulting from the leaching of calcium aluminate slags generated 

from pyrometallurgical reduction of various ores/by-products for metallic iron, silicon, and 

manganese extraction within several EU-funded projects. Such calcium aluminate slags are 

leached with sodium carbonate, generating a pregnant leaching solution. The entire process is 

evaluated starting from the carbonation of the pregnant leaching solution, where alumina hydrates 

(aluminium hydroxides) are precipitated by purging carbon dioxide gas into the solution. The 

alumina hydrates are calcined to produce alumina (aluminium oxide), which is used for its 

dissolution in cryolite.  

The research aims to highlight the key characteristics of this process and the challenges involved 

in producing smelter-grade alumina. In addition, critical aspects of the process, such as the 

removal of sodium ions from the hydrated precipitate, are assessed. These are instrumental 

in attaining the purity and quality of the alumina hydrate. The findings demonstrate the 

viability of processing industrial by-products into useful products with reduced environmental 

impact. This study provides information on the efficiency of carbonation and facilitates the 

development of more sustainable alumina production from alternative raw materials. 

Keywords: Alumina hydrates, Alumina, Carbonation precipitation, Calcination, Cryolite 

dissolution. 

1. Introduction

Aluminothermic processes are emerging as promising alternatives to traditional carbothermic 

reduction methods [1]. Unlike carbothermic reduction, which relies on carbon-based reductants 

and results in significant CO2 emissions, aluminothermic reduction employs aluminium, 

preferably sourced from scrap or dross, as a reductant. This approach can substantially lower the 

greenhouse gas emissions, particularly if the aluminium used can be recovered downstream.  

Depending on the process, calcium aluminate (CA) slags are a by-product of aluminothermic 

reduction processes. They are generated when aluminium reacts with oxides like dicalcium 

silicate slag, iron oxide, or other metal oxides in the presence of a calcium source. CA slags can 

also be produced from bauxite residue smelting for iron recovery. The composition and structure 

of CA slags can vary, but they typically contain significant quantities of aluminium oxide and 

depending on their phase composition and cooling conditions, can serve as secondary alumina 
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sources. Efficient utilization of CA slags is crucial to maximizing resource recovery, minimizing 

waste, and promoting a circular economy [2]. 

 

CA slags can be leached with a sodium carbonate (Na2CO3) solution to produce a pregnant 

leaching solution (PLS), rich in sodium aluminate and a solid residue predominantly composed 

of calcium carbonate. Although this solution is often supersaturated, its alumina concentration 

(15–70 g/L Al2O3) is lower than that typically found in Bayer liquors (85–165 g/L Al2O3) [3]. In 

the Bayer process, only a relatively small portion of alumina is recovered via cooling 

crystallization; the rest remains in the recycled liquor. In contrast, carbonation, through pH-driven 

precipitation, can achieve high alumina recoveries, enhancing process productivity. Furthermore, 

CO2 addition regenerates the Na2CO3 solution, allowing it to be reused for fresh slag leaching. 

Leaching CA slags with Na2CO3 yields a complex alkaline PLS, primarily composed of sodium 

aluminate (NaAl(OH)4), sodium carbonate, and sodium hydroxide. The simplified leaching 

reaction – similar to the liquor causticization – done in the Bayer process is shown in Equation 1, 

though it varies with the specific CA phases: 

 
𝐶𝑎𝑂 ∙ 𝐴𝑙2𝑂3(𝑠) + 𝑁𝑎2𝐶𝑂3(𝑎𝑞) + 𝐻2𝑂(𝑙) → 2𝑁𝑎𝑂𝐻(𝑎𝑞) +𝑁𝑎𝐴𝑙𝑂2(𝑎𝑞) + 𝐶𝑎𝐶𝑂3 ↓ (1) 

 

When the resulting PLS is carbonated, alumina hydrates precipitate according to Equations 2–5. 

These reactions highlight the dynamic interplay between dissolved carbon dioxide, hydroxide 

ions, and aluminate species, ultimately leading to the formation of solid alumina hydrates. 

 
𝐶𝑂2(𝑔) → 𝐶𝑂2(𝑎𝑞) (2) 

  
𝐶𝑂2(𝑎𝑞) + 𝑂𝐻(𝑎𝑞)

− → 𝐻𝐶𝑂3(𝑎𝑞)
−  (3) 

  
𝐻𝐶𝑂3(𝑎𝑞)

− + 𝑂𝐻(𝑎𝑞)
− → 𝐶𝑂3(𝑎𝑞)

2− + 𝐻2𝑂(𝑙) (4) 

  
𝐴𝑙(𝑂𝐻)4(𝑎𝑞)

− → 𝐴𝑙𝑂𝐻3(𝑠) ↓ +𝑂𝐻(𝑎𝑞)
−  (5) 

 

While carbonation offers a promising method for alumina hydrate recovery, several challenges 

must be addressed. High Na2CO3 concentrations in the solution, arising from incomplete leaching, 

excessive reagent use, or excessive CO2 addition, can lead to the formation of dawsonite 

(NaAlCO3(OH)2), a sodium aluminate carbonate hydroxide. Dawsonite co-precipitates with 

alumina hydrates when Na2CO3 exceeds a critical concentration, reducing the purity of the final 

product and causing significant sodium losses [4]. Another concern is silicon co-precipitation. 

Silicate ions in the leach solution can lead to the incorporation of silicon into the precipitated 

product. Additionally, sodium ions may adsorb onto the surface of alumina hydrates, especially 

when sodium concentrations are high, further complicating downstream purification. 

 

This study investigates the recovery of alumina from CA slags, a by-product of pyrometallurgical 

processes, via a carbonation-based route. The goal is to produce smelter-grade alumina (SGA) 

with a reduced environmental footprint. Key aspects examined include CO2 consumption based 

on flow rate, the impact of seeding on particle size enhancement, the removal of residual soda 

and the calcination behavior of the alumina hydrates from alternative resources, contributing to a 

more sustainable and circular economy. Finally, the dissolution of the calcined alumina in cryolite 

is evaluated to assess its suitability for use in aluminium production. 

 

2. Materials and Methods 

 

2.1 Calcium Aluminate Slags 
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The results of the dissolution test are presented in Figure 7. Calcined aluminas from different raw 

materials are presented.  The tested samples showed lower reactivities compared to the SGA 

sample, however, this is still within acceptable limits. Concerning the alumina sample originating 

from calcium silicate slag, the initial probe response was a sharp rise and fall before steadily 

increasing. This initial response does not correspond to the amount of dissolved alumina, 

indicating that the probe was disturbed by the alumina addition.  

 

4. Conclusions 

 

This study highlights key process insights for alumina recovery from calcium aluminate slags via 

sodium carbonate leaching and carbonation. CO2 consumption experiments showed that higher 

gas flowrate accelerates precipitation but reduces gas utilization efficiency, as unreacted CO2 exits 

the system more rapidly. Seeding with gibbsite promoted both primary nucleation and secondary 

crystal growth. Prominently, seeding also directed the precipitating phase toward gibbsite, 

matching the seed material and enhancing phase selectivity. 

 

Although the precipitated hydrates exhibited high Al2O2 content, their Na2O levels exceeded SGA 

limits. Water washing effectively reduced Na2O content to near industrial tolerance (0.6%), 

though not fully within standard SGA specifications. Calcination revealed typical phase 

transitions toward α-alumina at 1200 °C, with slower kinetics attributed to residual sodium 

impurities. Despite this, the final products demonstrated good dissolution behaviour in molten 

cryolite, comparable to standard SGA, confirming its potential as a viable alumina source pending 

further impurity control. 

 

To sum up, if desilication is applied prior to carbonation and sodium removal becomes more 

effective, reducing the need for extensive water washing, there is a clear potential for scalable and 

sustainable alumina production from calcium aluminate slags, with promising applicability in the 

aluminium industry. The remaining consideration is whether differences in precipitate 

morphology could pose operational challenges, which warrants further investigation. 
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